
Final Exam — Analysis (WBMA012-05)

Monday 29 January 2024, 18.15h–20.15h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. Provide clear arguments for all your answers: only answering “yes”, “no”, or “42”
is not sufficient. You may use all theorems and statements in the book, but you
should clearly indicate which of them you are using.

3. The total score for all questions equals 90. If p is the number of marks then the
exam grade is G = 1 + p/10.

Problem 1 (15 points)

The so-called diameter of a nonempty and bounded set A ⊆ R is defined as

diam(A) = sup{|x− y| : x, y ∈ A}.

Prove that for the half-open interval A = (−1, 5] we have diam(A) = 6.

Hint: for arbitrary x, y ∈ A you can assume without loss of generality that y ≤ x.

Problem 2 (8 + 7 = 15 points)

Consider the following sequence:

xn+1 =
1

4− xn
with x1 = 3.

(a) Show that xn+1 < xn and xn > 0 for all n ∈ N.

(b) Prove that the sequence (xn) converges and compute limxn.

Problem 3 (5 + 5 + 5 = 15 points)

For all n ∈ N we define the number an by truncating the number
√

2 after the n-th
decimal place. For example, a1 = 1.4 and a2 = 1.41.

Consider the set A = {an : n ∈ N}.

(a) Is A open?

(b) Is A closed?

(c) Is A compact?

Please turn over for problems 4, 5 and 6!
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Problem 4 (9 + 6 = 15 points)

Consider the function f : R→ R given by

f(x) =

{
x sin(1/x) if x 6= 0,

0 if x = 0.

Prove the following statements:

(a) f is uniformly continuous on [1,∞).

(b) f is uniformly continuous on [0, 1].

Problem 5 (10 + 5 = 15 points)

Consider the sequence of functions fn : R→ R given by

fn(x) = 1 + x+ x2 + · · ·+ xn−1.

(a) Let 0 < a < 1. Show that (fn) converges uniformly on the set A = [−a, a].

(b) Show that (fn) does not converge uniformly on the set B = (−1, 1).

Problem 6 (8 + 7 = 15 points)

Consider the function f : [0, 1]→ R given by

f(x) =

{
1 if x 6= 1,

2 if x = 1.

(a) Given ε > 0 construct a partition Pε of [0, 1] such that U(f, Pε) < 1 + ε.

(b) Prove that f is integrable on [0, 1] and
∫ 1

0
f = 1.

Please do not forget to fill out the online course evaluation!

End of test (90 points)

— Page 2 of 10 —



Solution of problem 1 (15 points)

Let x, y ∈ A be arbitrary. Without loss of generality, we can assume that y ≤ x (otherwise
we interchange the roles of x and y). Since x ≤ 5 and y > −1, and thus −y < 1, we have

|x− y| = x− y = x+ (−y) < 5 + 1 = 6.

This shows that u = 6 is an upper bound for the set S = {|x− y| : x, y ∈ A}.
(5 points)

To show that u = 6 is the least upper bound for A, we can follow (at least) two different
approaches.

Method 1. Let b ∈ R be an arbitrary upper bound for the set S. Then for all x, y ∈ A
with y ≤ x we have

x− y ≤ b.

(2 points)

In particular, for x = 5 and yn = −1 + 1/n, where n ∈ N, we have

6− 1/n ≤ b.

(4 points)

Taking the limit for n→∞, the Order Limit Theorem implies that 6 ≤ b. By definition,
this shows that u = 6 is the least upper bound for S.
(4 points)

Method 2. Let ε > 0 be arbitrary. First consider the case ε ≤ 6. Take x = 5 and
−1 < y < −1 + ε. Then x, y ∈ A with y ≤ x.
(4 points)

We have
|x− y| = x− y = 5− y > 5 + (1− ε) = 6− ε.

(4 points)

When ε > 6 we can simply take x = y = 5 which gives

|x− y| = 0 > 6− ε.

(1 point)

Lemma 1.3.8 (characterization of least upper bounds) implies that diam(A) = sup(S) = 6.
(1 point)
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Solution of problem 2 (8 + 7 = 15 points)

(a) We have x2 = 1 so x2 < x1.
(1 point)

Now assume that for some n ∈ N we have xn+1 < xn, and thus 4 − xn+1 > 4 − xn.
By taking reciprocals the inequality signs flip again and we get xn+2 < xn+1. By
induction it follows that the sequence (xn) is strictly decreasing, as claimed.
(3 points)

We clearly have x1 > 0.
(1 point)

Now assume that for some n ∈ N we have xn > 0. Since we already know that (xn)
is a decreasing sequence, we also know that xn ≤ x1 = 3. This gives 1 ≤ 4− xn < 4.
By taking reciprocals, we get that xn+1 > 1/4 > 0. By induction it follows that the
terms of the sequence (xn) are strictly positive, as claimed.
(3 points)

(b) Since the sequence (xn) is decreasing and bounded from below, the Monotone Con-
vergence Theorem implies that the sequence converges.
(2 points)

Write x = limxn. Then we have x = 1/(4− x), or, equivalently, x2 − 4x+ 1 = 0.
(2 points)

The solutions of this quadratic equation are x = 2±
√

3.
(2 points)

Since 2+
√

3 > 3 and the sequence (xn) is decreasing, we conclude that limxn = 2−
√

3.
(1 point)
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Solution of problem 3 (5 + 5 + 5 = 15 points)

(a) The element a1 = 1.4 belongs to A. For any ε > 0 the set Vε(a1) = (a1 − ε, a1 + ε)
contains irrational numbers. Note that all the elements of A are rational numbers;
indeed, for any n ∈ N the number 10nan is an integer. Hence, the inclusion Vε(a1) ⊆ A
cannot hold. We conclude that A is not open.
(5 points)

(b) The sequence (an) belongs to the set A. Note that |an −
√

2| ≤ 1/10n → 0 and
an 6=

√
2 for all n ∈ N. We conclude that

√
2 is a limit point of the set A. Since

√
2

is irrational and A only contains rational numbers it follows that A does not contain
all its limit points. We conclude that A is not closed.
(5 points)

(c) There are three methods to show that A is not compact.

Method 1. If A is compact, then A is both closed and bounded. However, In part (b)
we concluded that A is not closed. Therefore, A is not compact.
(5 points)

Method 2. Consider the sequence (an) as defined in the problem. Then (an) is a
sequence in the set A (that is, all terms of the sequence are contained in the set). Note
that (an) is a convergent sequence with lim an =

√
2. Therefore, every subsequence

(ank
) is also convergent and lim ank

=
√

2.
(2 points)

However, since A only contains rational numbers, we have that
√

2 /∈ A. This means
that A does not satisfy the definition of a compact set (namely that every sequence
in the set has a convergent subsequence of which the limit also belongs to the set).
We conclude that A is not compact.
(3 points)

Method 3. Note that the sets Ok = (1, ak+1), where k ∈ N form an open cover for A.
(3 points)

However, for all n ∈ N we have that O1∪ · · · ∪On = (1, an+1) which only contains the
points a1, . . . , an. Therefore, A cannot be covered with finitely many of the sets Ok.
This shows that A is not compact.
(2 points)

Method 4 (definitely a harder approach). Note that
√

2 /∈ A since all elements of A are
rational numbers. In particular, it follows that |an −

√
2| > 0 for all n ∈ N. Consider

the following open intervals:

Ok =

(
ak −

|ak −
√

2|
2

, ak +
|ak −

√
2|

2

)
.

Since ak ∈ Ok we have that

A ⊆
∞⋃
k=1

Ok,

which means that the sets Ok form an open cover for A. If A is compact, then
finitely many of these sets also cover A. That is, there exists n ∈ N such that
A ⊆ O1 ∪O2 ∪ · · · ∪On.
(3 points)
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Consider the following positive number:

ε0 = min

{
|ak −

√
2|

2
: k = 1, . . . , n

}
.

Since lim an =
√

2 there exists N ∈ N such that |aN −
√

2| < ε0. Note that for all
k = 1, . . . , n we have∣∣aN − ak∣∣ =

∣∣(aN −√2)− (ak −
√

2)
∣∣

≥
∣∣|aN −√2| − |ak −

√
2|
∣∣ (use that

∣∣|u| − |v|∣∣ ≤ ∣∣u− v∣∣)
= |ak −

√
2| − |aN −

√
2|

> |ak −
√

2| − |ak −
√

2|
2

=
|ak −

√
2|

2
,

which implies that aN /∈ Ok. But this implies that the sets O1, . . . , On do not cover
the set A. From this contradiction we conclude that A cannot be compact.
(2 points)
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Solution of problem 4 (9 + 6 = 15 points)

(a) The usual rules for differentiating functions gives

f ′(x) = sin(1/x)− cos(1/x)

x
.

Taking absolute values implies that for all x ≥ 1 we have

|f ′(x)| ≤ | sin(1/x)|+ | cos(1/x)|
x

≤ 1 +
1

x
≤ 2.

(3 points)

For any x, y ∈ [1,∞) with x 6= y the Mean Value Theorem implies that there exists
a point c between x and y such that

f(x)− f(y) = f ′(c)(x− y).

Taking absolute values gives

|f(x)− f(y)| = |f ′(c)| |x− y| ≤ 2|x− y|.

Clearly, this inequality still holds when x = y (because then both sides are zero).
(3 points)

Let ε > 0 be arbitrary and δ = ε/2. For all x, y ∈ [1,∞) we have

|x− y| < δ ⇒ |f(x)− f(y)| ≤ 2|x− y| < 2δ = ε,

which shows that f is uniformly continuous on [1,∞).
(3 points)

(b) Note that the function f is differentiable, and hence continuous, at each point x 6= 0.
(1 point)

Since |f(x)| ≤ |x| it follows that f is also continuous at x = 0. This can be shown in
two different ways.

Method 1. Let (xn) be any sequence such that xn → 0. Then

|f(xn)− f(0)| = |f(xn)| ≤ |xn| → 0,

which implies that f(xn)→ f(0).
(3 points)

Method 2. Let ε > 0 be arbitrary and set δ = ε. If |x− 0| < δ, then

|f(x)− f(0)| = |f(x)| ≤ |x| = |x− 0| < δ = ε.

(3 points)

This implies that the function f is continuous on the compact set [0, 1]. Now recall the
theorem stating that continuous functions on compact sets are uniformly continuous.
(2 points)
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Solution of problem 5 (10 + 5 = 15 points)

(a) Method 1. Note that we have that

fn(x) =
1

1− x
− xn

1− x
.

This implies that for all x ∈ (−1, 1) the sequence (fn) converges pointwise to the
function f(x) = 1/(1− x).
(3 points)

Let 0 < a < 1. For all x ∈ A = [−a, a] we have

|fn(x)− f(x)| = |x|n

1− x
≤ an

1− x
≤ an

1− a
.

(3 points)

From here there are two ways to show the uniform convergence.

Alternative A. We have

0 ≤ lim

(
sup
x∈A
|fn(x)− f(x)|

)
≤ 1

1− a
lim an = 0,

which implies that (fn) converges uniformly to f on A.
(4 points)

Alternative B. Pick N ∈ N such that

N >
log(a(1− ε))

log(a)

Note that log(a) < 0. For all n ≥ N we have n log(a) ≤ N log(a) and thus

|fn(x)− f(x)| ≤ an

1− a
=
en log(a)

1− a
≤ eN log(a)

1− a
< ε for all x ∈ A = [−a, a].

By definition (fn) converges uniformly to f on A.
(4 points)

Method 2. The functions fn are the partial sums of the power series
∑∞

k=0 x
k. The

latter series has a radius of convergence equal to R = 1 (which easily follows from
either the ratio test or root test).
(5 points)

From the general theory of power series it follows that the partial sums converge
uniformly on all compact sets within the interval of convergence. Indeed, pick a
number b ∈ (a, 1). Since b ∈ (−R,R) = (−1, 1), Theorem 6.5.1 implies that the
power series converges absolutely for any x satisfying |x| < b. In particular, this is
the case for x = a. Theorem 6.5.2 implies that the power series converges uniformly
on [−a, a].
(5 points)

Method 3. For all x ∈ [−a, a] we have |xk| ≤ ak. Since 0 < a < 1 the series
∑∞

k=0 a
k

is convergent. By Corollary 6.4.5 (the Weierstrass M -test) it follows that the series∑∞
k=0 x

k converges uniformly on [−a, a].
(8 points)
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But the functions fn are just the partial sums of this series. Therefore, the sequence
(fn) converges uniformly on [−a, a].
(2 points)

(b) For all x ∈ B = (−1, 1) we have

|fn(x)− f(x)| = |x|n

1− x

But the right hand side is an unbounded function on the set B.
(2 points)

In particular, it is not true that

lim
n→∞

(
sup
x∈B
|fn(x)− f(x)|

)
= 0,

which means that the sequence (fn) does not converge uniformly on the set B.
(3 points)
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Solution of problem 6 (8 + 7 = 15 points)

(a) If 0 < ε < 2, then we take Pε = {0, 1− ε/2, 1} and get

U(f, Pε) = (1− ε/2) sup{f(x) : x ∈ [0, 1− ε/2]}+ (1− (1− ε/2)) sup{f(x) : x ∈ [1− ε/2, 1]}
= (1− ε/2) + ε

= 1 + ε/2

< 1 + ε.

(6 points; also fine with nonstrict inequality, i.e., U(f, Pε) ≤ 1 + ε)

If ε ≥ 2, then simply take Pε = {0, 1} to get

U(f, Pε) = (1− 0) sup{f(x) : x ∈ [0, 1]} = 2 < 1 + ε.

(2 points)

(b) For all partitions P = {x0 < x1 < · · · < xn} of [0, 1] we have

L(f, P ) =
n∑
k=1

(xk − xk−1) inf{f(x) : x ∈ [xk−1, xk]}

=
n∑
k=1

(xk − xk−1)

= 1.

(3 points)

By part (a) it follows that for all ε > 0 there exists a partition Pε of [0, 1] such that
U(f, Pε) < 1 + ε, which gives

U(f, Pε)− L(f, Pε) < ε.

By Theorem 7.2.8 it follows that f is integrable on [0, 1].
(2 points)

Finally, note that by definition we have∫ 1

0

f = sup{L(f, P ) : P ∈ P} = 1.

(2 points)
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